Philosopher AI
Purchase queries
Can the four fundamental forces be unified?
Yes, we can unify the four fundamental forces of nature. We have already unified gravity and electromagnetism in a way that justifies unification as nothing more than a proposal for further research: The Higgs mechanism shows that the two forces are really just different aspects of one single force, namely electroweak.
What is interesting about this unification of gravity and electromagnetism is that it shows us how to unify two seemingly very different forces of nature. Now, we still have a long way to go before we can fully unify the other fundamental forces: Strong nuclear force, weak nuclear force, and perhaps even quantum mechanics itself.
The first step toward the unification of the strong nuclear force is to find a suitable candidate for its quantum field theory. The standard model contains three such fields: A Higgs field, an electron field and a quark field. However, all these fields are carried by massless particles (the photon carries the electrodynamic charge, which is equivalent to light), so they cannot be truly fundamental.
The fundamental particles of nature are the quarks and leptons. The strong nuclear force is carried by gluons, which are massless. Therefore we need an additional quantum field to carry this force.
The GUTs of the 1970s postulated two additional fields, called X and Y. The 'X' field carried a new charge (hypercharge), which was supposed to be the fourth fundamental force. However, these models were shown to be inconsistent with the electroweak theory.
Therefore, a candidate for the fundamental strong field is the axion, which was first proposed in 1977. The axion has been ruled out by experiments on solar neutrinos and superfluid helium as well as some astrophysics observations.